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Abstract
The problem of collective decision by design teams has received considerable attention in the scientific literature of engineer-
ing design. A much debated problem is that in which multiple designers formulate their individual preference rankings of 
different design alternatives and these rankings should be aggregated into a collective one. This paper focuses the attention 
on three basic research questions: (1) “How can the degree of concordance of designer rankings be measured?”, (2) “For a 
given set of designer rankings, which aggregation model provides the most coherent solution?”, and (3) “To what extent is 
the collective ranking influenced by the aggregation model in use?”. The aim of this paper is to present a novel approach that 
addresses the above questions in a relatively simple and agile way. A detailed description of the methodology is supported 
by a practical application to a real-life case study.

Keywords  Engineering design · Collective decision-making · Design teams · Preference ranking · Collective ranking · 
Degree of concordance

1  Introduction

A general problem, which may concern many design con-
texts, is to aggregate multiple rankings of different design 
alternatives into a collective (social) one. This problem may 
concern the early design stages, in which designers often 
have conflicting opinions (Fu et al. 2010; Frey et al. 2009; 
Hoyle and Chen 2011; Keeney 2009; Weingart et al. 2005).

Let us consider the case in which m designers (or, more 
in general, decision-making agents: D1–Dm) formulate their 
corresponding m preference rankings among n design alter-
natives (or, more in general, objects: O1, O2, O3, etc.). It is 
assumed that the preference rankings of designers are com-
plete, i.e., all designers are able to rank all the alternatives 
of interest, without omitting any of them.

Each ranking can be decomposed into paired-compari-
son statements such as O1 > O2, O1~O2, and O2 > O1, where 

symbols “>” and “~”, respectively, mean “strictly preferred 
to” and “indifferent to”. Additionally, designer rankings—
which will hereafter also be referred to as “preference pro-
files”—may be more or less concordant with each other.

The collective ranking is supposed to reflect the m-rank-
ings as much as possible, even in the presence of diverging 
preferences. For this reason, it can also be defined as social, 
consensus or compromise ranking (Cook 2006; Herrera-
Viedma et al. 2014; Franceschini et al. 2016).

The aggregation problem of interest may also take into 
account the importance of designers, which could not neces-
sarily be equal for all of them. However, for the purpose of 
simplicity, in the rest of the paper designers will be assumed 
to be equally important.

Decision-making problems based on rankings are very 
diffused in the scientific literature for two reasons: (1) rank-
ings are probably the most intuitive and effective way to rep-
resent preference judgments of design alternatives, and (2) 
rankings do not require a common reference scale—neither 
numeric, linguistic or ordinal—to be shared by designers 
(Yager 2001; Chen et al. 2012).

Many approaches have been proposed in the literature 
to address the problem of aggregating rankings by multi-
ple decision-making agents (Arrow 2012; Rayanaud 1986; 
Franssen 2005; Cook 2006; Hazelrigg 1999; Frey et al. 
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2010; Katsikopoulos 2012; Ladha et al. 2003; Reich 2010). 
In general, different aggregation models may lead to differ-
ent collective rankings of the alternatives under considera-
tion (social choice) (Arrow and Rayanaud 1986; McComb 
et al. 2017). The fact remains that it is not easy to iden-
tify the model that provides the collective ranking that best 
reflects the m-rankings. This paper will try to address this 
problem.

In recent years, a long and passionate debate on the appli-
cability and effects of the Arrow’s theorem on design deci-
sions has characterized the engineering design literature 
(Arrow 2012; Rayanaud 1986; Reich 2010; Hazelrigg 1996, 
1999, 2010; Scott and Antonsson 1999; Franssen 2005; Yeo 
et al. 2004; McComb et al. 2017). In a nutshell, this theo-
rem establishes the impossibility of a generic aggregation 
model to provide a solution (i.e., a collective ranking) that 
is always fair.1

In line with the hypotheses of McComb et al. (2017), 
this paper is concerned with team decisions in the early 
design stages. Since design outlines are not yet well defined 
at this stage, the debate on the most relevant design criteria 
and methods to quantify/prioritize them is potentially very 
intense (Weingart 2005; Kaldate 2006; McComb et al. 2015, 
2017). Although there is a substantial agreement on the cri-
teria that may condition the design process, the selection 
of design alternatives is generally driven by the different 
personal experience of designers (Dwarakanath and Wal-
lace 1995).

It is then necessary to adopt appropriate aggregation 
models to “transform” the decisions of individual design-
ers into a collective design decision. In this scenario, the 
Theorem of Arrow finds grounds for its application, with 
some important practical effects (Hazelrigg 1999; Saari 
and Sieberg 2004; Franssen 2005; Jacobs et al. 2014). The 
first effect—as the theorem itself shows—is that there is no 
aggregation model that can always satisfy several proper-
ties, also known as fairness criteria (Arrow 2012; Fishburn 
1973a, Nisan et al. 2007; Saari 2011a, b):

1.	 Unrestricted domain (universality) The aggregation 
model is defined for problems characterized by any num-
ber of decision-making agents, any number of alterna-
tives and any composition of preference rankings over 
alternatives.

2.	 Non-dictatorship The aggregation model does not sim-
ply return the very same preference ranking of a specific 
decision-making agent (i.e., the so-called dictator).

3.	 Independence of irrelevant alternatives (IIA) The collec-
tive preference between alternatives x and y must depend 

solely on the relative preferences between x and y in the 
individual rankings.

4.	 (Weak) monotonicity If any decision-making agent mod-
ifies his or her preference ranking by promoting a cer-
tain alternative, then the collective preference ranking 
should respond only by promoting the same alternative 
or remaining unchanged.

5.	 Pareto efficiency (unanimity) If all decision-making 
agents prefer x to y, then the collective ranking must 
also prefer x to y.

The second effect of the Arrow’s theorem is that one 
cannot establish ex ante the aggregation model that most 
consistently reflects the preference rankings by decision-
making agents. Several quantitative attempts of measuring 
this coherence (or consistency) are discussed (Chiclana 
et al. 2002; Franceschini and Maisano 2015a, 2017). We 
also recall McComb et al. (2017), who hypothesized a rela-
tionship between the concept of aggregation-model fairness 
and that of implicit agreement. The most coherent aggrega-
tion model can generally be identified ex post, since it may 
depend on the preference profile.

The third effect of Arrow’s theorem is probably less intui-
tive than the previous ones. Since each aggregation model 
is inherently “imperfect” (consistently with the afore-illus-
trated first effect), the resulting collective ranking will also 
be imperfect. The imperfection of the collective ranking may 
partly depend on (1) the preference profile and (2) the aggre-
gation model. Unfortunately, it is not easy to separate the 
impact of these two factors. This concept has been elegantly 
summarized in a statement by Saari (Decision and Elections 
2001, p. 13), in the field of voting theory: “…the winner 
of an election may more accurately reflect the choice of a 
decision procedure rather than the view and preferences of 
voters”.

The scientific literature includes a wide number of aggre-
gation models, which have been analyzed extensively from 
the perspective of different axioms and properties (Arrow 
2012; Fishburn, 1973; Cook 2006; Saary 2011a, b; Nurmi 
2012). Some researches demonstrate the effectiveness of 
specific aggregation models, even though they do not sat-
isfy some of the Arrow’s fairness criteria. For instance, Dym 
et al. (2002) showed that, although the Borda aggregation 
model may not satisfy the IIA condition, this rarely affects 
the most preferred alternatives. In other words, Arrow’s 
theorem poses a considerable theoretical problem, but the 
practical implications are often not so worrisome.

Another research by See and Lewis (2006) proposes a 
structured approach to avoid severe theoretical conflicts. 
The paper by Katsikopoulos (2009) expressed the need for 
greater clarity in the discussion of design decision mod-
els; a distinction between the concepts of coherence and 
correspondence is necessary to structure design activities. 1  This concept will be clarified later.
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Coherence is used to characterize the internal consistency of 
a model, while correspondence refers to the representation 
of the external performance. Additionally, Katsikopoulos 
(2009) suggested that the arguments by Scott and Antons-
son (1999) are rooted in the framework of correspondence, 
while the arguments introduced by Franssen (2005) in that 
of coherence. Jacobs et al. (2014) recognized several addi-
tional issues on the concepts of uncertainty, comparability 
and measurability concerned with aggregation models.

Considering the above implications of the Arrow’s theo-
rem, the choice of the aggregation model depends on the 
specific objective(s) of the decision-making team (Dong 
et al. 2004; Cagan and Vogel 2012). Selecting an adequate 
aggregation model is not an easy task, since this choice can 
importantly affect the collective ranking (Li et al. 2007; Pau-
lus et al. 2011; Franceschini et al. 2019). For the purpose of 
example, possible selection strategies could be:

1.	 designers select only the most preferred alternative;
2.	 designers select the two most preferred alternatives;
3.	 designers reject the least preferred alternative(s);
4.	 …

In this paper, we try to face three basic research questions:

•	 “How can the degree of concordance of designer rank-
ings be measured?”;

•	 “For a given set of designer rankings, which aggregation 
model provides the most coherent solution?”;2

•	 “To what extent, is the collective ranking influenced by 
the aggregation model in use?”

The remainder of this article is organized into six sec-
tions. Section 2 introduces a case study concerning the 
design of an automatic pallet stretch-wrapping machine, 
which will accompany the theoretical description of the 
proposed methodology. Section 3 focuses on the estimation 
of the concordance of designer rankings, presenting some 
popular aggregation models. Sections 4 propose a novel 
method for testing the coherence of the collective ranking 
with designer rankings, trying to quantify the influence of 
the aggregation model in use. Section 5 summarizes the 
original contributions of this paper, practical implications, 
limitations and suggestions for future research.

2 � Real‑life case study

The conceptual description of the proposed approach will 
be accompanied by a practical application to a real-life case 
study, which is illustrated below. Suppose a company designs 
and manufactures automatic machines for stretch-wrapping 
pallets. Four design concepts (O1–O4, i.e., the alternatives 
or objects of the problem) of automatic machines have been 
generated by a team of designers during the conceptual 
design phase (see the short description in Fig. 1):

•	 (O1) conveyorized turntable;
•	 (O2) non-conveyorized turntable;
•	 (O3) rotary ring;
•	 (O4) conveyorized rotary arm.

(O1) Conveyorized turntable (O2) Non-conveyorized turntable (O3) Rotary ring (O4) Conveyorized rotary arm

Unlike traditional turntables or rotary 
arms, these machines rotate only the 
carriage itself. Featuring a compact 
design, these machines allow to reduce 
film costs dramatically, since they can 
start and stop the cycle anywhere on 
the load.

Operators just have to place the pallet 
on the stretch wrapper and press the 
button to begin the automatic cycle. 
These machines eliminate the need for 
operators to get off the forklift to 
stretch wrap pallets and are available 
for both “low profile” and “high 
profile” wrapping operations.

These machines eliminate the need to 
rotate the pallet being stretch wrapped. 
Heavy or unstable loads can quickly 
and efficiently be wrapped with these 
machines. These machines are most 
commonly used in-line with the rest of 
the packaging line.

These machines offer a relatively 
flexible and economical stretch-
wrapping solution (i.e., relatively high 
load rate and reasonable weight 
capacity). Featuring a compact design, 
these machines are generally best when 
faced with tight fitting applications.

Fig. 1   Schematic representation and short description of four design concepts of automatic stretch-wrapping machines

2  I.e., the solution that best reflects designer rankings.
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The objective is to evaluate the afore-mentioned design 
concepts in terms of user friendliness, i.e., a measure of the 
ease of use of a machine, which generally implies a certain 
level of automation and a good user interface (Önüt et al. 
2008). Some of the factors that can positively influence 
user friendliness are: (1) the ability of a machine to adapt 
to loads with different mass, (2) the ability to be integrated 
within various production lines, or (3) the reduced set-up 
operations.

A collective judgment should be obtained by merging the 
individual (subjective) evaluations of ten design engineers 
(i.e., the decision-making agents of the problem: D1–D10). 
The case study actually involved a team of designers in an 
important company based in north-western Italy. For reasons 
of confidentiality, the company is kept anonymous.

The preference profile provided for the four design con-
cepts is shown in Table 1.

3 � Concordance of designers

3.1 � The W coefficient

The problem of evaluating the degree of concordance/
agreement of a set of preference rankings (preference pro-
file variability) can be traced back to the so-called problem 
of m-rankings. In this context, Kendall and Smith (1939) 
proposed the variance of the sum of the rank positions as 
a measure of this concordance. Precisely, a coefficient of 
concordance W  can be defined as (Kendall and Smith 1939; 
Kendall 1962; Fishburn 1973b; Legendre 2005, 2010):

The term S in Eq. (1) corresponds to the observed sum of 
squares of the deviations of the sums of the rank positions 
with respect to the mean value:

(1)W =
S

m2(n3−n)
12

.

The term m2
(

n3 − n
)

∕12 is the maximum possible value 
of S, which occurs in the case of complete unanimity in the 
rankings ( W = 1).

The first term Ri in the brackets of Eq. (2) is the sum of the 
rank positions for the i-th object:

in which terms rij represent the rank of object Oi, accord-
ing to the j-th designer, n the total number of objects and m 
represents the total number of rankings. The second term 
in the brackets in Eq. 2 is the mean value of the Ri values:

where W  is defined in the dominion [0, 1], W = 0 the 
absence of concordance, while W = 1 indicates the complete 
concordance (unanimity). By replacing Eqs. (2), (3) and (4) 
within Eq. (1), the following expression can be obtained:

The coefficient W may be slightly modified if, apart from 
strict–preference relationships, preference rankings also 
include tied values, characterized by indifference relationships 
(e.g., O1~O2) (Kendall 1962; Legendre 2010).

The effect of ties is to reduce the value of W; however, this 
effect is small unless the number of ties is large. To correct for 
ties, we introduce the following correction factor:

where ti is the number of tied ranks in the i-th group of tied 
ranks (where a group is a set of values having the same (tied) 
rank), and gj is the number of groups of ties in the set of 
ranks (ranging from 1 to n) for the j-th designer. Thus, Tj is 
the correction factor required for the set of ranks related to 
the j-th designer. Note that if there are no tied ranks for the 
j-th designer, then Tj = 0.

With the correction for ties, the formula of W (Eq. 5) 
becomes that of WT:

(2)S =

n
∑

i=1

(Ri − R̄)2.

(3)Ri =

m
∑

j=1

rij,

(4)R̄ =
1

n

n
∑

i=1

Ri,

(5)W =
12

∑n

i=1
R2

i
− 3m2n(n + 1)2

m2n
�

n2 − 1
� .

(6)Tj =

gj
∑

i=1

(

t3
i
− ti

)

; ∀j = 1, … ,m,

(7)WT =
12

∑n

i=1
R2

i
− 3m2n(n + 1)2

m2n
�

n2 − 1
�

− m
∑m

j=1
Tj

,

Table 1   Preference profile 
provided by ten design 
engineers (D1–D10) for the four 
design concepts (O1–O4)

Designer Preference ranking

D1 O
1
> O

2
> O

3
> O

4

D2 O
1
> O

2
> O

3
> O

4

D3 O
1
> O

3
> O

4
> O

2

D4 O
1
> O

4
> O

3
> O

2

D5 O
1
> O

4
> O

3
> O

2

D6 O
3
> O

2
> O

4
> O

1

D7 O
3
> O

2
> O

4
> O

1

D8 O
4
> O

2
> O

3
> O

1

D9 O
4
> O

2
> O

3
> O

1

D10 O
4
> O

2
> O

3
> O

1
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where 
∑m

j=1
Tj is the sum of the values of Tj . WT  is also 

defined in the dominion [0, 1].
Returning to the case study concerning the four design 

concepts of automatic stretch-wrapping machines, Table 2 
shows the calculation of their ranks.

Since there are no tie–break conditions, we may immedi-
ately calculate the coefficient of concordance for the m-rank-
ings using Eq. (5):

The subscript “(m)” indicates that this indicator is deter-
mined by considering the m-rankings of the designers. The 
low value of W (m) denotes a very low concordance of the 
m-designer rankings in the evaluation of the four design con-
cepts. Section 1 (in Appendix) analyzes the W indicator from 
a statistical point of view and provides a practical method 
for testing its significance.

3.2 � Choice of the aggregation model

The choice of the aggregation model usually reflects the 
strategy of a team of designers. The aggregation models are 
inspired by the need to take into account all information 
provided by designers, ensuring fairness criteria in the treat-
ment of information (McComb et al. 2017). With reference 
to the case study (see Sect. 2), we now consider four dif-
ferent aggregation models, inspired by four corresponding 
strategies of the design team.

1.	 Best of the best model (BoB or standard plurality vote)

For each designer, the most preferred design concept is 
selected. With reference to Table 1, O1 gets five preferences, 

(8)

W
(m) =

12
(

25
2 + 26

2 + 25
2 + 24

2
)

− 3 × 10
2 × 4(4 + 1)2

10
2
4
(

42 − 1
)

= 0.004 = 0.4%.

O2 gets zero preferences, O3 gets two preferences and O4 
gets three preferences. The collective ranking is, therefore, 
O1 > O4 > O3 > O2 and the preferred design concept is O1.

2.	 Best two models (BTW or vote for two)

For each designer, the two most preferred design concepts 
are selected. With reference to Table 1, O1 gets five prefer-
ences, O2 gets seven preferences, O3 gets three preferences 
and O4 gets five preferences.

The collective ranking is, therefore, O2 > O1 ∼ O4 > O3 
and the preferred design concept is O2 . In this case, we 
observe an equivalence condition between O1 and O4.

3.	 Best three models (BTH or vote for three)
	   For each designer, the three most preferred design 

concepts are selected (i.e., the worst solution of each 
designer is not considered). In this case, O1 gets five 
preferences, O2 gets seven preferences, O3 gets ten pref-
erences and O4 gets eight preferences. The collective 
ranking is, therefore, O3 > O4 > O2 > O1 and the pre-
ferred design concept is, therefore, O3.

4.	 Borda count model (BC)
	   For each rank position, a score is assigned (Borda 

1781): respectively, 3 points to the first one, 2 points to 
the second, 1 point to the third, and 0 points to the fourth 
one. With reference to Table 1, we obtain:

BC(O1) , BC(O2) , BC(O3) and BC(O4) being, respec-
tively, the Borda scores calculated for the four 
design concepts. The collective ranking is, therefore, 
O4 > O1 ∼ O3 > O2 and the preferred design concept is 
O4 . Also in this case, we observe an equivalence condi-
tion between O1 and O3.

	   The four aggregation models reflect different selec-
tion strategies, leading to four different collective rank-
ings and four corresponding preferred design concepts. 
Which collective ranking best reflects the m-designer 
rankings?

	   From a conceptual point of view, all these models 
deserve equal dignity, since they are all potentially plau-
sible and justifiable. However, the fact remains that they 
may importantly affect the solution. The following sec-
tion will try to answer the above question.

	   Finally, we point out that the four aggregation mod-
els considered above can be classified as “positional 
models” and allow to determine a collective ranking in 
a single round. Alternatively, we could have used so-
called “multi-round” aggregation models, in which the 

(9)

BC(O1) = 5 × 3 + 0 × 2 + 0 × 1 + 5 × 0 = 15; BC
(

O2

)

= 14,

BC
(

O3

)

= 15; BC(O4) = 16.

Table 2   Ranks for the four 
design concepts (O1, O2, O3 and 
O4), obtained from the designer 
rankings in Table 1

Designer Rank positions

O
1

O
2

O
3

O
4

D1 1 2 3 4
D2 1 2 3 4
D3 1 4 2 3
D4 1 4 3 2
D5 1 4 3 2
D6 4 2 1 3
D7 4 2 1 3
D8 4 2 3 1
D9 4 2 3 1
D10 4 2 3 1
R
Oi

25 26 25 24
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alternatives can be phased out in different rounds (Saari 
2011a, b; Bormann and Golder 2013).

4 � Coherence of the collective ranking

4.1 � The W(m+1) technique

This approach follows the conceptual scheme seen in 
Sect. 3.1. The idea is to analyze the level of coherence of 
the m-designer rankings and the collective ranking resulting 
from the application of the aggregation model, constructing 
the new coefficient of concordance W (m+1) . As an example, 
Table 3 shows the construction of W (m+1) for the BoB aggre-
gation model.

The overall coefficient of concordance W (m+1)

BoB
 for the BoB 

model can be obtained by applying Eq. (8) to the 11 rank-
ings in Table 3:

We observe that W (m+1)

BoB
> W (m) , i.e., the overall degree of 

concordance between the (10 + 1) rankings has increased. This 
output appears reasonable since the collective ranking resulting 
from the BoB model is a “composition” of the ten previous 
rankings and is, therefore, supposed to reflect them all.

Repeating the construction for the other aggregation mod-
els (BTW, BTH and BC), results in Table 4 are obtained. The 
same table compares the W (m+1)

i
 values with the respective 

(10)W
(m+1)

BoB
=

12
(

262 + 302 + 282 + 262
)

− 3 × (10 + 1)2 × 4(4 + 1)2

(10 + 1)24
(

42 − 1
)

= 0.0182 = 1.82% .

W (m) value (the same for all aggregation models) for the four 
aggregation models of interest.

It can be noticed that the Borda count model obtains the 
highest value of W (m+1)

i
 ; it is, therefore, the aggregation model 

with the collective ranking that best fits with the m-rankings.

4.2 � Further considerations on the W(m+1) technique

If designer rankings are very polarized (i.e., they are char-
acterized by a relatively low variability), we expect that the 

output of different aggregation models converges towards 
a common collective ranking, e.g., in the extreme case in 
which all the m-designer rankings coincide, the four aggre-
gation models would converge into that very specific (col-
lective) ranking.

As a pedagogical example, let us consider a new prob-
lem characterized by the set of m-rankings in Table 6. With 
reference to Table 1, we imagine that the three designers 

Table 3   m-rankings and corresponding rank positions of (1) the four 
design concepts (O1–O4) formulated by ten designers (D1–D10) (see 
Table  1), and (2) the collective ranking obtained through the BoB 
model

Designer Preference ranking Rank positions

O
1

O
2

O
3

O
4

D1 O
1
> O

2
> O

3
> O

4
1 2 3 4

D2 O
1
> O

2
> O

3
> O

4
1 2 3 4

D3 O
1
> O

3
> O

4
> O

2
1 4 2 3

D4 O
1
> O

4
> O

3
> O

2
1 4 3 2

D5 O
1
> O

4
> O

3
> O

2
1 4 3 2

D6 O
3
> O

2
> O

4
> O

1
4 2 1 3

D7 O
3
> O

2
> O

4
> O

1
4 2 1 3

D8 O
4
> O

2
> O

3
> O

1
4 2 3 1

D9 O
4
> O

2
> O

3
> O

1
4 2 3 1

D10 O
4
> O

2
> O

3
> O

1
4 2 3 1

BoB model O
1
> O

4
> O

3
> O

2
1 4 3 2

R
Oi

26 30 28 26

Table 4   Wi
(m+1) values for the four aggregation models (i: BoB, 

BTW, BTW, BC) compared to the relevant W(m) values

Aggregation model W
(m+1)

i
 (%) W

(m) (%)

Best of the best (BoB) 1.82 0.4
Best two (BTW) 0.58 0.4
Best three (BTH) 1.48 0.4
Borda count (BC) 2.00 0.4

Table 5   New m-rankings and corresponding rank positions of the 
four design concepts (O1–O4) formulated by ten designers (D1–D10)

Designer Preference ranking Rank positions

O
1

O
2

O
3

O
4

D1 O
1
> O

2
> O

3
> O

4
1 2 3 4

D2 O
1
> O

2
> O

3
> O

4
1 2 3 4

D3 O
1
> O

2
> O

3
> O

4
1 4 2 3

D4 O
1
> O

2
> O

3
> O

4
1 4 3 2

D5 O
1
> O

2
> O

3
> O

4
1 4 3 2

D6 O
1
> O

3
> O

4
> O

2
4 2 1 3

D7 O
1
> O

4
> O

3
> O

2
4 2 1 3

D8 O
1
> O

4
> O

3
> O

2
4 2 3 1

D9 O
3
> O

2
> O

4
> O

1
4 2 3 1

D10 O
3
> O

2
> O

4
> O

1
4 2 3 1

R
Oi

26 30 28 26
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who indicated the ranking O4 > O2 > O3 > O1 (i.e., D8, 
D9 and D10) converted their preference into the ranking 
O1 > O2 > O3 > O4 ; see the corresponding rank positions 
on the right-hand side of Table 5.

In this case, the W (m) is supposed to increase with respect 
to that of Table 1, due to the reinforced polarization of pref-
erences. Applying Eq. (5), we obtain:

Not surprisingly, this value is conspicuously higher than 
that in Eq. (8).

Table 6 summarizes the collective rankings resulting from 
the m-rankings in Table 5, for each (i-th) aggregation model 
and corresponding W (m+1)

i
 and W (m) values.

Even in this second scenario, the Borda Count model 
shows the highest coefficient of concordance. This is not a 
general rule, since—when changing the preference profile—
the model that best reflects it may change.

In addition, we note that the condition W (m+1)

i
⩾ W (m) 

holds for each of the four aggregation models, when con-
sidering both the preference profiles in Tables 2 and 5. How-
ever, this is not a general rule, as shown by the counterex-
ample in Table 7.

Suppose we use a hypothetical aggregation model 
(H-model) that provides the following collective ranking 
O4 > O3 > O2 > O1 , which is the opposite to those by the 
two designers of interest. In this case, it can be verified that 
W (m) = 1 , while

Although this exercise may seem somewhat implausible, 
it shows that—from a formal point of view—the condition 
W

(m+1)

H
⩾ W (m) does not necessarily hold.

The W (m+1) technique considers the coefficient of con-
cordance W (m) as the fulcrum for checking the concordance 
of the m-rankings and the coherence with the collective 

(11)

W
(m) =

12
(

16
2 + 26

2 + 25
2 + 33

2
)

− 3 × 10
2 × 4(4 + 1)2

10
2
4
(

42 − 1
)

= 0.29 = 29%.

(12)

W
(m+1)

H
=

12
(

6
2 + 7

2 + 8
2 + 9

2
)

− 3 × (2 + 1)2 × 4(4 + 1)2

(2 + 1)24
(

42 − 1
)

= 0.111 = 11.1% .

ranking. The same technique can also be applied with other 
potential coefficients of concordance, e.g., the mean value 

of the Spearman coefficient (rho) between the 
(

m

2

)

 possible 

pairs of designers (Kendall 1962).

4.3 � Impact of the aggregation models

This section deals with the problem of measuring the impact 
of the aggregation model in use on the collective ranking. 
Consistently with the contents of the previous sections, the 
following synthetic indicator can be considered:

It can easily be proved that b(m)
i

∈]0,∞[ . For a certain 
set of m-rankings, if b(m)

i
 ≥ 1, it means that the i-th aggrega-

tion model provides a somehow coherent collective ranking 
(positive impact). On the contrary, if b(m)

i
< 1 , it means that 

the i-th aggregation model provides a somehow incoherent 
collective ranking (negative impact).

In practice, for a specific set of m-rankings, b(m)
i

 allows to 
identify the most coherent aggregation model, i.e., that with

By way of example, Table 8 reports the value of b(m)
i

 for 
the four discussed aggregation models, considering the 
m-rankings in Table 6.

In this case, the BC is the aggregation model that pro-
duces the collective ranking that best reflects the m-rankings.

To test the significance of an observed value of b(m)
i

 , one 
should consider the relevant distribution, which arises from 
the composition of the two distributions of W (m) and W (m+1)

i
 

(see also Sect 1 in Appendix). Precisely, one can consider 
the distribution of b(m)

i
 in the (n!)(m+1) possible sets of rank 

positions and use it to reject or accept the hypothesis that 
designer rankings are concordant or not (Kendall 1962).

(13)b
(m)

i
=

W
(m+1)

i

Wm
.

(14)b(m)∗ = maxib
(m)

i
.

Table 6   Collective rankings provided by four different aggrega-
tion models (BoB, BTW, BTW, BC) for the (m) designer rankings 
reported in Table 5, and corresponding W (m+1)

i
 and W (m) values

Aggregation model Collective ranking W
(m+1)

i
 (%) W

(m) (%)

Best of the best (BoB) O
1
> O

3
> O

2
∼ O

4
32.6 29

Best two (BTW) O
1
> O

2
> O

3
> O

4
33.2 29

Best three (BTH) O
3
> O

1
> O

2
> O

4
30.6 29

Borda count (BC) O
1
> O

3
> O

2
> O

4
33.5 29

Table 7   m-rankings and corresponding rank positions of (1) four 
design concepts (O1–O4) formulated by two designers (D1, D2), and 
(2) the collective ranking obtained through a hypothetical aggregation 
model (H-model)

Designer Preference ranking Rank positions

O
1

O
2

O
3

O
4

D1 O
1
> O

2
> O

3
> O

4
1 2 3 4

D2 O
1
> O

2
> O

3
> O

4
1 2 3 4

Collective ranking 
by the H-model

O
4
> O

3
> O

2
> O

1
4 3 2 1
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As a further example, Table 9 shows the value of b(m)
i

 for 
the four aggregation models discussed in Sect. 3.2, related 
to the (m) designer rankings in Table 3.

Even in this case, the BC is the aggregation model 
that produces the collective ranking that best reflects the 
m-rankings.

In practice, b(m)
i

 can be used as a metric to assess the rela-
tive impact of two aggregation models to be compared. For 
a given preference profile, we define the relative impact in 
the form of a ratio s(m)

ij
 between the b(m)

i
 values for two 

generic models (i and j):

As an example, for the BoB and BTW models in Table 9 
we obtain:

The relative impact s(m)
BoB, BTW

= 3.14 shows the greater 
impact of the BoB model in supporting the choice of O1 
as opposed to that of the BTW model in supporting the 
choice of O2 (in fact, the resulting collective rankings are 
O1 > O4 > O3 > O2 for BoB and O2 > O1 ∼ O4 > O3 for 
BTW, as shown in Sect. 3.2).

Let us now analyze in detail the b(m)
i

 indicator (Eq. 13). 
The denominator ( W (m) ) depends exclusively on the m-rank-
ings, while the numerator ( W (m+1)

i
 ) depends both on the 

m-rankings and the collective ranking. For problems char-
acterized by a relatively large number (m) of rankings, the 

(15)s
(m)

ij
=

b
(m)

i

b
(m)

j

=
W

(m+1)

i

W
(m+1)

j

.

(16)s
(m)

BoB, BTW
=

b
(m)

BoB

b
(m)

BTW

=
4.55

1.45
=

W
(m)

BoB

W
(m)

BTW

= 3.14.

contribution of the collective ranking will, therefore, tend to 
have a lower “weight”, i.e., 1/(m + 1).

Moreover, b(m)
i

 values tend to be higher for problems char-
acterized by relatively discordant m-rankings (and, therefore, 
lower W (m) values). For example, the b(m)

i
 values in Table 9 

are significantly higher than those in Table 8, as they result 
from a problem with significantly more discordant m-rank-
ings and, therefore, relatively lower W (m) values.

5 � Discussion

This paper proposed a novel method to support the decisions 
of teams of designers in early design stages, trying to pro-
vide a plausible answer to three different research questions: 
(1) how can the degree of concordance of designer rankings 
be measured? (2) For a given set of designer rankings, which 
aggregation model provides the most coherent solution? (3) 
To what extent is the collective ranking influenced by the 
aggregation model in use?

The answer to the first research question is represented 
by the Kendall’s coefficient of concordance W, or by other 
similar multi-rater coefficients of agreement. The next two 
research questions were interpreted as consequences of 
Arrow’s theorem, when deployed in the context of engi-
neering design. In this field, designers often have contrast 
opinions on alternative design solutions and it is not easy to 
decide how to aggregate the choices of individual design-
ers into a single collective one. The answer to the second 
research question was given by a special use of the coeffi-
cient W. This coefficient of concordance is applied not only 
to m-rankings but also to the collective ranking produced by 
the aggregation method of interest. The new indicator W(m+1) 
allows a quick comparison between alternative aggregation 
models, if they are applied to the same specific problem, 
describing their “effectiveness”.

For the third research question, paraphrasing Arrow’s 
theorem, it is difficult to understand if and to what extent a 
certain aggregation model impacts on the collective rank-
ing. A practical answer is given by the b(m)

i
 indicator, which 

depicts the ability of a certain aggregation model to pro-
vide a plausible synthesis. b(m)

i
 can also be used to provide 

a quantitative metric for evaluating the relative impact of 
different models.

Having said that, let us now consider the proposed approach 
in its entirety. This approach is easily implementable and, with 
few additional adjustments, can also be applied to problems 
including partial preference rankings (Franceschini and Mai-
sano 2018).

The main limitations of the proposed approach are:

Table 8   bi
(m) values for the four aggregation models of interest, con-

sidering the m-rankings in Table 6

Aggregation model W
(m+1)

i
 (%) W

(m) (%) b
(m)

i
 (%)

Best of the best (BoB) 1.82 0.4 4.55
Best two (BTW) 0.58 0.4 1.45
Best three (BTH) 1.48 0.4 3.70
Borda count (BC) 2.00 0.4 5.00

Table 9   bi
(m) values for the four aggregation models of interest, con-

sidering the m-rankings in Table 3

Aggregation model W
(m+1)

i
 (%) W

(m) (%) b
(m)

i

Best of the best (BoB) 32.6 29 1.12
Best two (BTW) 33.2 29 1.14
Best three (BTH) 30.6 29 1.06
Borda count (BC) 33.5 29 1.16
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•	 the method considers neither the (possible) uncertainty in 
designer rankings, nor possible incompleteness in prefer-
ence rankings;

•	 the method allows only an ex post analysis of the impact of 
aggregation models.

Regarding the future, we plan to develop an interactive 
on-line tool for supporting the activity of design teams. In 
addition, this tool will be used for more structured problems 
in the field of design for manufacturing and quality engineer-
ing/management (e.g., integrating it with the Quality Func-
tion Deployment and other design support tools) (Olewnik and 
Lewis 2008; Franceschini et al. 2015b, c; Chen et al. 2017). 
Finally, we plan to consider problems in which designers may 
have a different (ordinal or cardinal) weight, for example, due 
to a different design experience.
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lenza CAP. 1694 TIT. 232 ART. 6”, which was conferred by “Ministero 
dell’Istruzione, dell’Università e della Ricerca-ITALY”.

Appendix

Statistical meaning of W

This subsection analyzes the statistical significance of W. In 
general, the W distributions are available in tabular terms for 
small values of m and n (Kendall 1962). For higher values, ​​the 
Fisher distribution can be used:

with parameters �1 and �2 defined, respectively, as

When n > 7, W (m) can be described by a chi-square distri-
bution �2

r
= m(n − 1)W (m) . �2

r
 is distributed as a �2

n−1
 with 

� = n − 1 degrees of freedom.
For example, considering the data in Table 6, where m = 10 

designers and n = 4 design concepts, W (m) = 0.29 . Applying 
Eq. (8), it can be obtained:

The degrees of freedom are, respectively:

(17)F =
(m − 1) ×W (m)

[1 −W (m)]

(18)

{

�1 = n − 1 −
2

m

�2 = (m − 1)
(

n − 1 −
2

m

) .

(19)F =
(10 − 1) × 0.29

(1 − 0.29)
= 3.67.

(20)

{

�1 = 4 − 1 −
2

10
= 2.8 ≈ 3

�2 = (m − 1)
(

n − 1 −
2

m

)

= 25.2 ≈ 25
.

From the tables of the Fisher distribution for a signifi-
cance of 5%, it is obtained F5%;3;25 = 2.99.

Since F > F5%;3;25 , the significance of the coefficient 
of concordance for the preference profile in Table  6 is 
confirmed.
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